Click here for Dr. Hadjipanayis’ Google Scholar profile

  1. Hadjipanayis, C.G. & Stummer, W. 5-ALA and FDA approval for glioma surgery. J Neurooncol 141: 479 (2019).
  2. Mahmoudi, K., Garvey, K.L., Bouras, A. et al. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas. J Neurooncol 141: 595 (2019).
  3. Díez Valle, R., Hadjipanayis, C.G. & Stummer W. Established and emerging uses of 5-ALA in the brain: an overview. J Neurooncol 141: 487 (2019).
  4. Hadjipanayis, C.G., et al. 5-ALA fluorescence-guided surgery of CNS tumors. J Neurooncol 141: 477 (2019)
  5. Freeman, A.C., et al. Convection-enhanced delivery of cetuximab conjugated iron-oxide nanoparticles for treatment of spontaneous canine intracranial gliomas. J Neurooncol 137: 653 (2018).
  6. Lakomkin N, Hadjipanayis CG. Fluorescence-guided surgery for high-grade gliomas. J Surg Oncol 118:356–361 (2018).
  7. Mahmoudi K, et al. Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy’s history, efficacy and application in humans. Int J Hyperthermia. 34(8):1316–1328 (2018).
  8. Ross JL, et al. 5-Aminolevulinic Acid Guided Sampling of Glioblastoma Microenvironments Identifies Pro-Survival Signaling at Infiltrative Margins. Sci Rep. 7(1):15593 (2017).
  9. Kairdolf BA, et al. Intraoperative Spectroscopy with Ultrahigh Sensiivity for Image-GUided Surgery of Malignant Brain Tumors. Analytical Chemistry 88(1):858-67 (2016).
  10. Hadjipanayis CG, et al. What is the Surgical Benefit of Utilizing 5-Aminolevulinic Acid for Fluorescence-Guided Surgery of Malignant Gliomas? Neurosurgery. 77(5):663–673 (2015).
  11. Bouras A, et al. Radiosensitivity enhancement of radioresistant glioblastoma by epidermal growth factor receptor antibody-conjugated iron-oxide nanoparticles. J. Neuro-Oncol (2015).
  12. Kaluzova M., Bouras A, Machaidze R, Hadjipanayis CG. Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab -conjugated iron -oxide nanoparticles. Oncotarget Apr 20;6(11):8788-806 (2015).
  13. Hadjipanayis CG, Bouras A, Chang S. Applications of Multifunctional Nanoparticles in Malignant Brain Tumours. Euro. Assoc. of NeuroOnc. Mag 4(1): 9-15 (2014).
  14. Wankhede M, Bouras A, Kaluzova M, Hadjipanayis CG. Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy. Expert Rev Clin Pharmacol. 5(2):173–186 (2012).
  15. Nduom, E. K., Bouras, A., Kaluzova, M. & Hadjipanayis, C. G. Nanotechnology applications for glioblastoma. Neurosurg. Clin. N. Am. 23, 439–49 (2012).
  16. Platt S, et al. Canine model of convection-enhanced delivery of cetuximab-conjugated iron-oxide nanoparticles monitored with magnetic resonance imaging. Clin Neurosurg. 59:107–113 (2012).
  17. Hadjipanayis, C. G., et al. Current and future clinical applications for optical imaging of cancer: from intraoperative surgical guidance to cancer screening. Semin. Oncol. 38, 109–18 (2011).
  18. Hadjipanayis, C. G. et al. EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res. 70, 6303–12 (2010).
  19. Tzitzios, V. et al. Immobilization of magnetic iron oxide nanoparticles on laponite discs – an easy way to biocompatible ferrofluids and ferrogels. J. Mater. Chem. 20, 5418–5428 (2010).
  20. Hadjipanayis, C. G. et al. Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia. Small 4, 1925–9 (2008).