Click here for Dr. Hadjipanayis’ Google Scholar profile
- Hadjipanayis, C.G. & Stummer, W. 5-ALA and FDA approval for glioma surgery. J Neurooncol 141: 479 (2019).
- Mahmoudi, K., Garvey, K.L., Bouras, A. et al. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas. J Neurooncol 141: 595 (2019).
- Díez Valle, R., Hadjipanayis, C.G. & Stummer W. Established and emerging uses of 5-ALA in the brain: an overview. J Neurooncol 141: 487 (2019).
- Hadjipanayis, C.G., et al. 5-ALA fluorescence-guided surgery of CNS tumors. J Neurooncol 141: 477 (2019)
- Freeman, A.C., et al. Convection-enhanced delivery of cetuximab conjugated iron-oxide nanoparticles for treatment of spontaneous canine intracranial gliomas. J Neurooncol 137: 653 (2018).
- Lakomkin N, Hadjipanayis CG. Fluorescence-guided surgery for high-grade gliomas. J Surg Oncol 118:356–361 (2018).
- Mahmoudi K, et al. Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy’s history, efficacy and application in humans. Int J Hyperthermia. 34(8):1316–1328 (2018).
- Ross JL, et al. 5-Aminolevulinic Acid Guided Sampling of Glioblastoma Microenvironments Identifies Pro-Survival Signaling at Infiltrative Margins. Sci Rep. 7(1):15593 (2017).
- Kairdolf BA, et al. Intraoperative Spectroscopy with Ultrahigh Sensiivity for Image-GUided Surgery of Malignant Brain Tumors. Analytical Chemistry 88(1):858-67 (2016).
- Hadjipanayis CG, et al. What is the Surgical Benefit of Utilizing 5-Aminolevulinic Acid for Fluorescence-Guided Surgery of Malignant Gliomas? Neurosurgery. 77(5):663–673 (2015).
- Bouras A, et al. Radiosensitivity enhancement of radioresistant glioblastoma by epidermal growth factor receptor antibody-conjugated iron-oxide nanoparticles. J. Neuro-Oncol (2015).
- Kaluzova M., Bouras A, Machaidze R, Hadjipanayis CG. Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab -conjugated iron -oxide nanoparticles. Oncotarget Apr 20;6(11):8788-806 (2015).
- Hadjipanayis CG, Bouras A, Chang S. Applications of Multifunctional Nanoparticles in Malignant Brain Tumours. Euro. Assoc. of NeuroOnc. Mag 4(1): 9-15 (2014).
- Wankhede M, Bouras A, Kaluzova M, Hadjipanayis CG. Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy. Expert Rev Clin Pharmacol. 5(2):173–186 (2012).
- Nduom, E. K., Bouras, A., Kaluzova, M. & Hadjipanayis, C. G. Nanotechnology applications for glioblastoma. Neurosurg. Clin. N. Am. 23, 439–49 (2012).
- Platt S, et al. Canine model of convection-enhanced delivery of cetuximab-conjugated iron-oxide nanoparticles monitored with magnetic resonance imaging. Clin Neurosurg. 59:107–113 (2012).
- Hadjipanayis, C. G., et al. Current and future clinical applications for optical imaging of cancer: from intraoperative surgical guidance to cancer screening. Semin. Oncol. 38, 109–18 (2011).
- Hadjipanayis, C. G. et al. EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res. 70, 6303–12 (2010).
- Tzitzios, V. et al. Immobilization of magnetic iron oxide nanoparticles on laponite discs – an easy way to biocompatible ferrofluids and ferrogels. J. Mater. Chem. 20, 5418–5428 (2010).
- Hadjipanayis, C. G. et al. Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia. Small 4, 1925–9 (2008).